
Efficient “out of heap” pointers for multicore OCaml

Guillaume Munch-Maccagnoni∗
INRIA

11th June 2022

1. Introduction

This paper reports an experiment with a large pages allocator for
the OCaml runtime, with measured performance improvements.
A large pages allocator (also known in the literature under other
names: superpages, etc.) is a standard component of a memory
allocator that stands between the OS and user-facing allocators
(e.g. minor and major heaps) and which reserves and manages
large chunks of contiguous memory. The OCaml runtime cur-
rently gives up a good amount of control by assigning this role to
the system allocator. Other languages have a simple implemen-
tation from which practical lessons can be learnt (especially in
terms of portability), such as the one from the Go runtime.

Control over large pages affect (traditionally) the components
implementing virtual address translation (hardware-level page
table, translation lookaside buffer), in particular by leveraging
(hardware-level) huge pages. It also enables (more specifically)
efficient implementations of the OCaml page table, a data struc-
ture used in various parts of the OCaml runtime to classify point-
ers, to distinguish for instance which blocks belong to the heaps
and which ones are “out of heap” during the marking phase of
the GC.

One goal was to evaluate the possible performance of a page ta-
ble for multicore OCaml. Whilst I did not use original techniques,
some of the results are unexpected a priori based on beliefs ex-
pressed in the OCaml community. In particular, the analysis
shows that a page table can speed-up marking, a phenomenon
which we reproduced in real-world programs.

In essence, this paper reports the good hypothetical perfor-
mance, in rigorous practical terms, of embedding (borrowing)
linearly-allocated values inside garbage-collected values. A com-
panion submission to the ML workshop reports a symmetrical
result: how to efficiently embed (own) garbage-collected values
inside linearly-allocated values. Taken together, the broader mo-
tivation is to show the feasibility of basing linear allocation with
re-use in languages that would still leverage state-of-art garbage
collection for non-linear values.

Page table The page table in OCaml 4 stores information about
the memory layout of the process at a granularity of 4kB OS
pages. It has a fairly inefficient implementation on 64-bit systems
using a hash table with linear probing. Its size grows linearly with
the size of the heap and tends to suffer from collisions. It has for
a long time been criticised for its performance overhead in 64-bit
programs especially with large heaps, leading to the introduction
of a compilation option called “no naked pointers” avoiding page

∗Guillaume.Munch-Maccagnoni@inria.fr

table checks in several performance-critical locations, at the cost
of stricter programming constraints. Furthermore, porting this
data structure to multicore OCaml was considered impossible
due to synchronisation costs.

Out of heap pointers To permit the complete removal of a page
table, most forms of out-of-heap pointers have been deprecated
starting from OCaml 4.11. I presented some time ago a position
paper (Munch-Maccagnoni, 2020) defending opportunities for
the alternative (of preserving out of heap pointers), and identi-
fying and addressing four challenges for a more efficient page
table design compatible with multicore OCaml.

One proposed application is for integrating linear-allocation
with re-use in languages that use a GC for managing non-linear
values. Linear allocation with re-use is a programming technique
inspired by linear logic (Lafont, 1988; Baker, 1992), also more
recently advocated and expanded under the name “functional but
in-place” by Reinking, Xie, de Moura, and Leijen, 2021. A page
table (or something to this effect to let the GC tell values apart)
enables the embedding (borrowing) of linearly-allocated values
inside GC-allocated values, in a way reminiscent of sharing from
functional programming. More background on the motivations,
and perspectives in link with linear allocation, are given in Ap-
pendix A.

Now, Munch-Maccagnoni (2020) did not experiment with an
implementation, which is the subject of the present work.

Since, and independently, the marking loop of OCaml’s GC
has been rewritten in order to leverage memory-level parallelism
in the CPU using prefetching, and tightly optimised, with a main
loop spanning a few CPU instructions.1 This further challenged
the prospects of an efficient page table, since it was not clear
how to leverage memory-level parallelism with this additional
lookup, nor whether the processor core had enough resources left
during the optimized marking for any such lookup not to cause a
noticeable slowdown.

In other words, doubts were raised, independently from
OCaml’s own choices, that the theorised mixed memory man-
agement technique might fundamentally involve a performance
trade-off; a claim that seemed to go beyond OCaml.

Other uses A large page allocator is also useful to implement
support for hardware-level huge pages, for instance via Transpar-
ent Huge Pages (THP) in Linux. Hardware huge pages reduce
the cost of cache misses by reducing the chances of TLB miss,
and therefore are beneficial to both the garbage collector and the

1Stephen Dolan (2021), “Speed up GC by prefetching during marking” ocam-
l/ocaml#10195

1

mailto:Guillaume.Munch-Maccagnoni@inria.fr
https://github.com/ocaml/ocaml/pull/10195
https://github.com/ocaml/ocaml/pull/10195


mutator in the presence of large heaps. OCaml currently has an
option to use huge pages in Linux, but it is difficult to set up,
and only affects the major heap, while users report large benefits
of having also a very large minor heap in some use-cases. In
addition, OCaml multicore has a new allocator that currently
lacks this support. OCaml minor and major heaps are partic-
ularly suitable for huge pages, and the lack of proper support
represented a missed optimisation opportunity.

In the future, a large page allocator or something to this effect
could be useful for targets that only offer an sbrk-style interface
to allocate memory (WebAssembly and bare metal). A page
table can also let the layout of minor heaps be relaxed in OCaml
5 (they currently have to be allocated contiguously to implement
an efficient “is young?” check); this could simplify for instance
the implementation of adaptive sizing for the minor heaps (Jones,
Hosking, and Moss, 2011, 7.7).

2. Experiment

The following is an abridged version of
https://gitlab.com/gadmm/ocaml-large-pages-experiment,
which describes the complete experiment and its results in more
details.

Implementation I have implemented a best-fit allocator that
manages large chunks of virtual memory (2𝑁 bytes reserved,
not allocated, per chunk), and subdivides it into smaller chunks
of memory allocated on request (multiples of 2𝑀 bytes where
𝑀 < 𝑁). Virtual memory is reserved as needed, preferably
contiguously to other chunks. I took 2𝑁 = 256MB and 2𝑀 =
2MB (the size of a huge page on x86-64) for the parameters
in this experiment. The implementation reuses generic data
structures of the OCaml runtime: it consists in two skip-lists
storing the free chunks by address and by size (respectively), with
coalescing. For a simple implementation, lookup and insertion
have a logarithmic average time that is fitting for a data structure
which remains small and is used infrequently (e.g. when the
major heap is expanded).

The new page table is implemented with a 1-level BiBoP (“big
bag of pages”, like OCaml’s 32-bit page table implementation),
whose entries describe these 2𝑁 bytes chunks; i.e. a table indexed
by the (48 − 𝑁) most significant bits of the addresses of the
chunks. It is subject to a monotonicity constraint which is realistic
for practical use-cases of the page table, as described in Munch-
Maccagnoni (2020). Page protection tricks are used to allocate
the table on demand (this turned out to be a secondary aspect not
needed for efficiency, with several plausible alternatives). Some
care and exploration were used to fit the assembly-optimised
style of the marking loop.

The strategy to fit the prefetching algorithm is to simply con-
sider that the page table entries are very likely to be in L1 cache.
A back-of-the-envelope calculation indeed shows that the data
needed by the marking loop (including memory being prefetched)
fits on average a small portion of the L1d cache available on mod-
ern processors (≥ 32KB). Now each cache line of the page table
describes 2𝑁+6 bytes of contiguous memory, when our allocator
tries to allocate as contiguously as possible. So in practice the
page table does not use more than a couple additional of lines of
L1d cache. Hence the page table does not need to be prefetched
itself, does not significantly affect the rate of false evictions, nor

do its accesses compete with prefetching resources (e.g. line
fill buffers). In this situation, depending on instruction-level
parallelism, it is possible that the page-table test costs nothing.

Some auxiliary tables are used for certain kinds of entries
that require a smaller granularity (e.g. static data). For these I
re-used the data structures of my best-fit allocator. This improves
over those which already exist in OCaml thanks to coalescing.
These auxiliary tables, although efficient, are not visited inside
the marking loop.

I have also implemented the synchronisation code that is
needed inside the marking loop for an implementation in multi-
core OCaml. There are two options:

1. The synchronisation code tests if the page table entry is
empty. If so, a compare_exchange is attempted in order to
taint the page table entry with a special value, which in case
of success indicates that the value was an actual out-of-heap
pointer (otherwise the up-to-date value is loaded). Thanks
to the monotonicity constraint, we know that this synchro-
nisation path is taken very infrequently in the presence of
multiple domains (at most once per domain and per 2𝑁 -
bytes page table entry; much less in practice because it is
only executed in case of races). Therefore we can reason that
the performance differences in the single-core benchmarks
are representative of multicore. Notably, effects of code
size and branch prediction are correctly taken into account.

2. More efficiently, by relying on dependency ordering on plat-
forms with a very weak memory model (e.g. Arm, and thus
stronger models such as x86), no extra synchronisation is
needed. The downside is that no tainting is performed to de-
tect when the monotonicity condition is broken. Since there
is no synchronisation and no contention, the performance
in single-core is again representative of multicore.

Unless indicated otherwise, this paper presents results for the
first implementation.

Finally, I have implemented an option to use huge-page al-
location with Linux’s THP for OCaml’s heaps, which I tested
separately.

Benchmark The baseline of my experiment is Stephen Dolan’s
optimised GC implementation with prefetching (“Speed up GC
by prefetching during marking” ocaml/ocaml#10195) rebased on
top of OCaml 4.12. The new large page allocator and page table
were implemented on top of it.2 I compared the performance of
the “no-naked-pointer” mode (which avoids a page table check
during marking) with the legacy and the new optimised page
table using synthetic benchmarks.

Care needed to be taken to compare equals for equals: even
small changes in GC patterns (for instance due to changing minor
heap size slightly) would have changed the results significantly
due to threshold effects, and rendered the comparison meaning-
less.

The synthetic benchmark is inspired by the one proposed by
Dolan in his experiment. It consists in allocating a large quantity
of values (ranging from 800MB to 11GB) distributed randomly,

2At the time of the experiment, OCaml 4.12 was the latest stable version of
OCaml, and the prefetching patch had not been merged yet. In addition, it
was not possible to work directly with the multicore branch since it lacks
prefetching (still at the time of writing this paper).

2

https://gitlab.com/gadmm/ocaml-large-pages-experiment
https://github.com/ocaml/ocaml/pull/10195


and so it constitutes a worst case in terms of cache locality. One
measures the major GC duration and other statistics.

I have improved the synthetic benchmark by introducing
variables such as the proportion of immediates, proportion of
statically-allocated blocks (to measure the benefits of skipping
during marking, an optimisation which a page table permits),
randomness of the heap (to measure the effect of load stalls), and
randomness of the block layout (to measure effects on branch
prediction). I have instrumented the OCaml runtime to measure
how fast mark slices run, how often statically-allocated blocks
data was encountered, and how diverse (non cache-local) the
static data visited during marking was.

With the synthetic benchmark, care was taken to control in
various ways for measurement biases caused by code layout, but
this effect was rarely important.

The impact of huge pages (THP) was also measured, separately
from that of the page table. The two features are orthogonal from
each other.

I have also obtained results on real-world OCaml and Coq
workloads, however they show greater variability. Controlling
for code layout effects as carefully as for the synthetic bench-
mark was not doable, but I obtained consistent results by running
the benchmarks using different compilers and compiler options
(which give different memory layouts).

The benchmarks were run using an Intel Core i7-6600U (Sky-
lake) processor, similar to Dolan’s experiment, which required
some care to avoid unreliable results due to a processor bug,
and later reproduced with AMD Ryzen 7 5850U and Intel Core
i7-1185G7 (Tiger Lake). Unless indicated otherwise, the fig-
ures reported below are for i7-6600U. In the real-program tests
(running on i7-6600U and i7-1185G7), care was also taken to
eliminate CPU frequency changes and CPU thermal throttling
(in the case of the synthetic benchmark, this was also considered,
but actually not necessary in order to obtain stable results).

3. Results

Contrary to the expectation that a page table would have an extrav-
agant cost with the prefetching GC, both the “no-naked-pointers”
mode and the new optimised page table bring a similar speedup of
about 26% in the synthetic benchmark, which measures major GC
duration, compared to the legacy page table. Furthermore, the
new page table consistently outperformed slightly the optimised
GC in “no-naked-pointers” mode in the synthetic benchmark, al-
beit negligibly (by ~1% of the major GC duration, that is ~0.15%
of the duration before the prefetching patch).

To understand this result, one should consider that even with-
out a page table, a test is still performed to skip values in the
minor heap. In a sense, multicore OCaml still needs a page table
of some kind3. The new page table turned out to be more efficient
than the previous check.4

This speedup is further improved by taking the skipping of
static data into account. Surprisingly, static data was found to
be encountered fairly frequently during marking in real-world

3One that limits the way minor heaps can be allocated in order to test quickly
whether a value is young, and does an expensive test to distinguish code
pointers in the bytecode interpreter.

4One hypothesis is that an optimisation turned out to be a pessimisation. Fixing
this would-be pessimisation improved the performance comparably to the
new page table. An analysis in terms of costs of branch mispredictions was
consistent with the effect.

OCaml and Coq workloads: between 3.7% and 7.2% of values
on average were skipped thanks to the page table, with spikes
at 40% during some marking slices. In terms of unique cache
lines, the amount of static data skipped during each marking slice
would most often be too large to remain in L1 (and often L2)
cache (see Figure in Appendix C). At a ratio of 5% static data
skipped, the synthetic benchmark shows a speedup of ~3% (a
figure that does not take into account possible costs of additional
branch mispredictions this causes).

The current page table scales poorly to large heaps, and to mul-
ticore. The new page table scales to large heaps both in theory
and practice, as the figures remained consistent with very large
heaps. Regarding scaling to multicore OCaml, the results con-
cerns an implementation that already supports parallel accesses
to the page table. I concluded that this single-core performance
is representative of the multi-core performance by a theoretical
argument.

THP brings various performance improvements, from about
10% of major GC time in the synthetic benchmark with a random
heap to a negligible impact with a non-random heap. (Note that
only the impact of THP during marking was measured.) It brings
comparable improvements whether by using my large page alloca-
tor or by using the jemalloc allocator with the option “thp:always”
(by preloading from the command line). So, the interested user
can already get most benefits of THP by changing the command
line invocation.5 A built-in allocator has further advantages than
a global system allocator setting (besides convenience): THP is
only used for memory allocations that are well-suited for it. This
can become relevant if the program uses non-OCaml libraries
not well-suited for THP.

In a similar area, I measured noticeable benefits, in conditions
of high TLB misses, of allocating memory as contiguously as
possible, which could likely be attributed to improved behaviour
for the MMU cache (TLB misses completing faster, see Barr,
Cox, and Rixner, 2010).

With the OCaml and Coq workloads, I initially observed that
the “no-naked-pointers” mode and the new page table have sim-
ilar performance, indistinguishable in terms of total running
time given the greater amount of variability. These real-program
results are hard to exploit because they are more noisy, and micro-
architectural effects might be more important, unlike our experi-
ence with the synthetic benchmark.

However more recent results with Core i7-1185G7 and using
the second implementation technique for the page table check
(the one using only dependency ordering for synchronisation), I
could indeed observe a consistent speedup of using a page table
probably due to the skipping of static data, from 1-2% (with gcc)
to 4-5% (with clang) of the marking slice duration, depending on
compiler options. (Remember that using different compilers and
compiler options was meant as a way to control to some degree
for code layout effects; this seems to confirm some speedup but
it does not tell by how much.)

Limitations I used a synthetic benchmark that exerts either a lot
of cache misses (random heap), or very few cache misses (non-
random heap). Real-world programs are likely in the middle,
but results between a random and a non-random heap are con-
sistent, with the exception of the impact of THP. The synthetic

5This is unfortunately not the case with the OCaml 5.0 allocator, which does
not use the system allocator in the same way.

3



benchmark also falls short of simulating real-world amounts of
branch mispredictions. Now the various implementations branch
in similar ways, except on static data. It is yet unclear whether
the benefits of skipping static data reflect in practice as strongly
as in the synthetic benchmarks; this could be explained by the
cost of branch mispredictions this creates.

Regarding static data usage, I have only tested OCaml and
Coq on intensive workloads; it would be interesting to see how
other programs visit static data during marking.

The synthetic benchmark only measures the major GC dura-
tion, while huge pages are likely to benefit the whole program.
Results on varied Coq workloads measuring the benefits of huge
pages and the new page table are encouraging6.

The friendliness towards THP is due among others to mem-
ory reclamation being performed via compaction, because it
frees up memory in large chunks. Without compaction, one
would encounter known issues of huge pages regarding memory
reclamation (whereby low amounts of fragmentation can prevent
reclamation). Thus one should expect multicore OCaml, which
currently lacks compaction, to be less friendly towards THP once
memory reclamation is implemented.

Thanks Thanks to Stephen Dolan for invaluable discussions,
patient explanations and advice. (Any error or opinion left in
this work is mine.)

A. Naked pointers & linear allocation with
re-use: motivations and perspectives

The usage of out-of-heap (naked) pointers in OCaml 4 falls
broadly into two categories.

Interoperability & backwards-compatibility The first usage is
for interoperability, where the concern is mainly backwards-
compatibility. When interacting with foreign code (for instance
via the OCaml C FFI), using out-of-heap pointers is the most
straightforward way to refer to foreign data inside OCaml data.
This usage is now considered inferior to alternatives using some
form of wrapping, essentially due to an unsoundness involving
the recycling of memory by the system allocator.

For various reasons including unsoundness, most forms of
naked pointers have been deprecated in OCaml 4.11. Starting
with OCaml 5, the program can crash or do worse things if the GC
encounters such a pointer. Compatibility risks have been evoked
early on with the deprecation, according to a public comment
dating back from 2015.

As we recently discovered, the use of naked pointers has been
advocated for a long time in a tutorial7 that has been recom-
mended by several popular resources from the OCaml community
over the years8.

6Thanks to Pierre-Marie Pédrot and Ralf Jung for running Coq benchmarks on
my branches.

7Florent Monnier, “How to wrap C functions to OCaml”, 2007-2020,
https://web.archive.org/web/20200223115730/http://www.linux-
nantes.org:80/∼fmonnier/OCaml/ocaml-wrapping-c.html (an updated
version which no longer advocates the use of naked pointers is available at
http://decapode314.free.fr/ocaml/ocaml-wrapping-c.html)

8At least until 2020 on the website http://ocaml.org and in the popular book
Real World OCaml (https://www.realworldocaml.org/).

Searching the opam repository for one specific usage pattern
suggested by this tutorial reveals a large sample of affected li-
braries (some of which have perhaps been fixed since the depre-
cation was announced). A careful evaluation to eliminate false-
positives was necessary, and there is of course no guarantee of
exhaustivity. (List in appendix B)

Without entering the details of why this usage of out-of-heap
pointers was unsound, one can ask under which set of conditions
it would materialise, given that it was apparently not an obstacle
to the development of many libraries using this technique. The
way the unsoundness manifests itself depends in fact on the im-
plementation details of the system allocator; reports of this issue
occurring in practice (which it does) involve specific usage pat-
terns. As matter of fact, no practical or theoretical unsafety had
been reported to the author of the tutorial during its existence.

One hypothesis is that this technique has been working reliably
in many situations. This creates of course an interesting and
delicate situation for backwards-compatibility. This is a usage
which one reasonably wants to deprecate due to its unsoundness,
yet:

1. It is possible that a good proportion of programs using these
libraries is actually accidentally bug-free.

2. The existence and usage of workarounds have been reported
for situations where the bug occurs (namely, forcing the GC
to run before large amounts of foreign data structure are
freed).

3. Some libraries that manage their own memory mapping
(such as Ancient, described later) took other measures to
avoid this bug.

For the sake of backwards-compatibility, a “naked pointer detec-
tor” has been proposed in OCaml 4.12, which warns when the
GC encounters a naked pointer. But while this tool can prove
that a program creates dangerous out-of-heap pointers, it does
not prove that a program nor its dependencies do not create any.
(We also do not know how well it works for users in practice.) In
contrast, delicate backwards-compatibility situations in relation-
ship to bugs are not unfamiliar to major operating systems and
industrial programming languages,9 where it can be preferred
to keep a bug in place (along with the work-arounds existing in
user code) over breaking user code.

But the new page table presents a better alternative, which is
to make these previously-dangerous uses safe, even in the event
where the choice was made to keep discouraging the use of such
naked pointers for new programs. Concretely, this would take
the form of an option to reserve the address space in advance for
the remainder of the execution10. This option could be enabled
anytime by either of the library, the final program, or even just
the user of the program in case of legacy programs.

Prior to this tutorial and its publicity being brought to my at-
tention, cases of high-profile code that must be changed were
already known11, including the innocuous usage of NULL as a
special value by some libraries12. In another case, an indus-

9Several sources advertise the OCaml language as an “industrial-strength” lan-
guage, or even a “systems” programming language.

10For some practical reasons, this behaviour is not desirable as a default.
11Some whose fix is still pending as of September 2022, such as the LLVM

bindings and native_compute in the Coq proof assistant.
12An interesting example of the usefulness of having a value different from every

valid OCaml value has been given, but the examples actually found in the
wild were much less interesting.

4

https://web.archive.org/web/20200223115730/http://www.linux-nantes.org:80/~fmonnier/OCaml/ocaml-wrapping-c.html
https://web.archive.org/web/20200223115730/http://www.linux-nantes.org:80/~fmonnier/OCaml/ocaml-wrapping-c.html
http://decapode314.free.fr/ocaml/ocaml-wrapping-c.html
http://ocaml.org
https://www.realworldocaml.org/


trial user has resigned to maintaining a patch to OCaml for an
indefinite amount of time for a key performance use-case, af-
ter a proposed alternative solution was rejected from the main
compiler branch.13

Eventually, the development of the “no-naked-pointers” mode,
followed by the full removal of the page table, a data structure
used pervasively in the OCaml runtime, the introduction of the
“naked pointer checker”, etc., have proved to require lots of efforts,
some compromises, and created unexpected issues. It also caused
a lot of adaptation work for some users.

The present work demonstrates that re-implementing the page
table with standard and well-tested techniques (a BiBoP based
on a large pages allocator, the latter of which is useful for other
things as well) was a simpler, less risky and just as performant
alternative.

Linear allocation The second usage of out of heap pointers
is more involved than storing foreign pointers, and concerns
experimental ways of mixing garbage-collected memory with
dynamically-allocated memory, for instance excluding some
memory from the GC. Either for performance and resource-usage
reasons (the Ancient library, which implements a persistent heap
outside of the major heap) or for incompatible ownership patterns
such as sharing data between processes (OCamlnet, an approach
which might be revisited for some use-cases once the limitations
of a stop-the-world collector will be felt). Dynamically-allocated
and -deallocated memory such as Ancient and OCamlnet are not
supported without a page table or something to this effect14.

I have in mind two experiments that would rely on the page
table. The first one is to prototype a version of Ancient that
performs hash-consing, specialised for the needs of the Coq
proof assistant, inspired by an experiment by Pédrot which has
previously shown promising gains.

The second one, where I believe my experiment is of general
interest, is about linear allocation with re-use. It should now be
possible to experiment with measuring benefits of this technique
alongside a garbage collector to manage non-linear values.

Linear allocation with re-use is an old idea (Lafont, 1988;
Baker, 1992), which has been found hard to apply; this is gener-
ally believed to be due to the expressiveness limitations of the
linearity discipline. It is now well understood that a linearity dis-
cipline must be complemented with a way of relaxing it through
some controlled form of copying (e.g. borrowing).

“Functional-but-in-place” (FBIP) programming (Reinking
et al., 2021) is a variant of linear allocation with re-use, which
achieves such mixing of linearity of copying by using reference
counting, in a context that can accommodate the known draw-
backs of the latter. (Linearity is detected dynamically using the
reference count, rather than statically.) It should be possible
instead to use regular tracing GC to express copying, which re-
quires to understand how linear allocation interacts with a GC
(at the level of types, but also at the machine level).

One crucial aspect seems to be the ability to treat the borrowing
of linearly-allocated data structures as a homomorphism (the
borrow of a list is isomorphic to a list of borrows, etc.). This
polymorphism of borrowed objects can be seen at work with
13See Leo White (2020), “Add raw_data primitives to avoid naked pointers”

ocaml/ocaml#9910
14For static allocation, i.e. without deallocation, other tricks have been proposed

to support it without a page table.

the Ancient library, in the way Ancient-allocated data structures
can be conveniently manipulated using usual OCaml code, and
mixed with usual OCaml data structures. Such isomorphisms are
also suggested by an abstract model of ownership (Combette and
Munch-Maccagnoni, 2018). It relies on leveraging the notion of
sharing from functional programming in a new way, and for this
reason it is not (yet) seen in languages such as Rust. This resource
polymorphism, whereby code operate on data indifferently of
the way the latter has been allocated, is, for me, what motivates
the page table, prior to efficiency concerns, compared to any
proposed alternative ways of handling out-of-heap pointers.

B. Some opam libraries using naked
pointers (as of August 2018)

Source: https://gitlab.com/gadmm/stdlib-experiment/-
/blob/master/other/async_audit/value (subject to analysis
and transcription error).

• curses
• dssi
• ezsqlite
• flow_parser
• flowtype
• gles3
• glfw-ocaml
• glMLite
• glsurf
• grib
• hiredis
• lablgl
• lablgtk3
• lablgtk3-gtkspell

• ladspa
• lutin
• mm
• ocamlsdl
• odbc
• offheap
• rdbg
• spf
• sqlite3
• sundialsml
• tuntap
• utp
• vhd-tool
• xen-gnt

This was tedious and time-consuming, I stopped half-way
through.

I have reported some to their author as time permitted, in which
case they have been fixed since.

C. Example of static data usage

I instrumented the OCaml runtime to record data about the static
data visited during marking. Figure 1 compares the amount of
values skipped thanks to the page table to the total number of
values seen by the GC when running OCaml (to compile the
Coq proof assistant) and the Coq proof assistant (to compile
its standard library and various libraries from the Mathcomp
project).

5

https://github.com/ocaml/ocaml/pull/9910
https://gitlab.com/gadmm/stdlib-experiment/-/blob/master/other/async_audit/value
https://gitlab.com/gadmm/stdlib-experiment/-/blob/master/other/async_audit/value


Figure 1: coq_mathcomp_no_native
6



References

Henry G Baker. 1992. Lively linear lisp: "Look ma, no garbage!".
ACM Sigplan notices 27, 8 (1992), 89–98. 1, 5

Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Transla-
tion Caching: Skip, Don’t Walk (the Page Table). In Proceed-
ings of the 37th Annual International Symposium on Com-
puter Architecture (ISCA ’10). Association for Computing
Machinery, New York, NY, USA, 48–59. https://doi.org/
10.1145/1815961.1815970 3

Guillaume Combette and Guillaume Munch-Maccagnoni. 2018.
A resource modality for RAII. In LOLA 2018: Workshop on
Syntax and Semantics of Low-Level Languages (2018-04-16).
https://hal.inria.fr/hal-01806634 5

Richard Jones, Antony Hosking, and Eliot Moss. 2011. The
Garbage Collection Handbook (hardcover ed.). Routledge.
520 pages. 2

Yves Lafont. 1988. The linear abstract machine. Theoretical
computer science 59, 1-2 (1988), 157–180. 1, 5

Guillaume Munch-Maccagnoni. 2020. Towards better systems
programming in OCaml with out-of-heap allocation. In ML
Workshop 2020. Jersey City, United States, 1–6. https://hal.
inria.fr/hal-03142386 1, 2

Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan
Leijen. 2021. Perceus: Garbage Free Reference Counting
with Reuse. In Proceedings of the 42nd ACM SIGPLAN In-
ternational Conference on Programming Language Design
and Implementation (PLDI 2021). Association for Computing
Machinery, New York, NY, USA, 96–111. https://doi.org/
10.1145/3453483.3454032 1, 5

7

https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/1815961.1815970
https://hal.inria.fr/hal-01806634
https://hal.inria.fr/hal-03142386
https://hal.inria.fr/hal-03142386
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/3453483.3454032

	Introduction
	Experiment
	Results
	Naked pointers & linear allocation with re-use: motivations and perspectives
	Some opam libraries using naked pointers (as of August 2018)
	Example of static data usage

